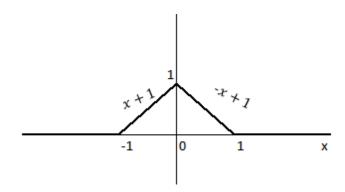
Correction du contrôle Biostat 2ème Année

Exercice 1:

$$f(x) = \begin{cases} 0 & \text{si } x \le -1 \\ x+1 & \text{si } -1 < x \le 0 \\ -x+1 & \text{si } 0 < x \le 1 \\ 0 & \text{si } x > 1 \end{cases}$$

1) Représentation graphique : Le domaine de définition $D_f = \mathbb{R}$



2)

L'espérance mathématique E(x)

$$E(x) = \int_{D} x f(x) dx = \int_{-\infty}^{+\infty} x f(x) dx = 0 + \int_{-1}^{0} x(x+1) dx + \int_{0}^{1} x(-x+1) dx + 0$$
$$= \left(\frac{x^{3}}{3} + \frac{x^{2}}{2}\right) \Big|_{-1}^{0} + \left(-\frac{x^{3}}{3} + \frac{x^{2}}{2}\right) \Big|_{0}^{1} = \frac{1}{3} - \frac{1}{2} - \frac{1}{3} + \frac{1}{2} = 0$$

Il est claire d'après la courbe que E(x) = 0

La variance et l'écart-type

$$V(x) = \int_{D} x^{2} f(x) dx - [E(x)]^{2} = \left[\int_{-1}^{0} x^{2} (x+1) dx + \int_{0}^{1} x^{2} (-x+1) dx \right] - 0$$

$$= \left(\frac{x^{4}}{4} + \frac{x^{3}}{3} \right) \Big|_{-1}^{0} + \left(-\frac{x^{4}}{4} + \frac{x^{3}}{3} \right) \Big|_{0}^{1} = -\frac{1}{4} + \frac{1}{3} - \frac{1}{4} + \frac{1}{3} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

$$\sigma(x) = \sqrt{V(x)} = \frac{1}{\sqrt{6}}$$

Exercice 2:

Sont demandés : effectifs cumulés, , moyenne arithmétique ,mode, médiane, étendue, variance, écart-type.

ai	10	10	5	5	5	10	10
Masse de l'œuf	27.5 – 37.5	37.5 – 47.5	47.5 – 52.5	52.5 – 57.5	57.5 – 62.5	62.5 – 72.5	72.5 – 82.5
Nombre d'œufs	3	51	74	112	92	62	6
N↑	3	54	128	240	332	394	400
N↓	400	397	346	272	160	68	6
ci	32,5	42,5	50	55	60	67,5	77,5
ni ci	97,5	2167,5	3700	6160	5520	4185	465

Σ 400

22295

L'étendue

$$E = x_{max} - x_{min} = 82,5 - 27,5 = 55$$

Le mode

Sans calculer l'effectif corrigé, et en regardant les amplitudes des classes, on remarque que les classes 3,4 et 5 ont la même amplitude (5 la plus petite), et l'effectif maximal correspond à la classe $n^{\circ}4$, alors $Mo \in [52.5 - 57.5]$

$$\begin{aligned} \mathit{Mo} &= l_1 + \frac{n_i - n_{i-1}}{2n_i - (n_{i-1} + n_{i+1})} (l_2 - l_1) \,, \qquad avec \; \mathit{Mo} \\ \epsilon &[52.5 - 57.5[\\ \mathit{Mo} &= 52.5 + \left[\frac{(112 - 74)}{2 \times 112 - (74 + 92)} \right] 5 = 55,78 \end{aligned}$$

La médiane

$$Me \equiv \frac{N}{2} \equiv 200 \Rightarrow Me\epsilon [52.5 - 57.5 [$$
 $Me = l_1 + \frac{l_2 - l_1}{n_0} (\frac{N}{2} - F \uparrow) \Rightarrow Me = 52.5 + \frac{5}{112} (200 - 128) = 55.71$

La moyenne

$$\bar{x} = \frac{\sum n_i c_i}{N} = \frac{3 \times 32.5 + \dots + 6 \times 77.5}{400} = 55,7375$$

La variance et l'écart-type

$$V(x) = \frac{\sum n_i c_i^2}{N} - \bar{x}^2$$

$$= \frac{3 \times (32.5)^2 + \dots + 6 \times (77.5)^2}{400} - (55,7375)^2 = 65,29$$

$$\sigma(x) = \sqrt{V(x)} = 8.08$$

Exercice 3:

Une étude sur le budget consacré aux vacances d'été auprès de ménages a donné les résultats suivants

Budget X	Fréquence cumulée	Fréquences	ci
[800, 1000[0.08	0,08	900
[1000, 1400[0.18	0,1	1200
[1400, 1600[0.34	0,16	1500
[1600, β[0.64	0,3	$(1600 + \beta)/2$
[β, 2400[0.73	0,09	$(\beta + 2400)/2$
[2400, $\alpha = 4000$ [1	0,27	3200

Le travail demandé:

ullet Certaines données sont manquantes. Calculer la borne manquante lpha sachant que l'étendue de la série est égale à 3200.

$$E = x_{max} - x_{min} = \alpha - 800 = 3200 \Rightarrow \alpha = 3200 + 800 = 4000$$

- Calculer les fréquences dans le tableau.
- Calculer la borne manquante β dans le cas suivant :

Le budget moyen est égal à 1995.

$$\bar{x} = \frac{\sum n_i c_i}{N} = f_i c_i$$

$$\bar{x} = 0.08 (900) + 0.1(1200) + 0.16(1500) + \frac{0.3(1600 + \beta)}{2} + \frac{0.09(\beta + 2400)}{2} + 0.27 (3200)$$

$$= 1995$$

$$\Rightarrow \frac{(0.3 + 0.09)\beta}{2}$$

$$= 1995$$

$$- [0.08 (900) + 0.1(1200) + 0.16(1500) + 0.3(800) + 0.09(1200)$$

$$+ 0.27 (3200)] = 351$$

$$\beta = 351 \times \frac{2}{(0.3 + 0.09)} = 1800$$