Université: Mohamed El-bachir El-Ibrahimi de Bordj Bou Arréridj

Faculté: Sciences de la Nature et de la Vie et Sciences de la Terre et d

Département: Sciences agronomiques

Année Universitaire:

2021 / 2022

2 ème année Master - Domaine: Sciences de la Nature et de la Vie - Filière: Sciences agronomiques -

Spécialité: Protection des végétaux - 3 ème Semestre

Section N° 1

Groupe N° 1

: 08/02/2022

Résultats de l'examen de la matière : T.D.S / Techniq.d analy statistiq.et traitm.donn

Unité Enseignement Méthodologie

Coef. examen: 60.00 % Coef. CC: 40.00% Coef.de la matière: 03

Crédit: 5.00

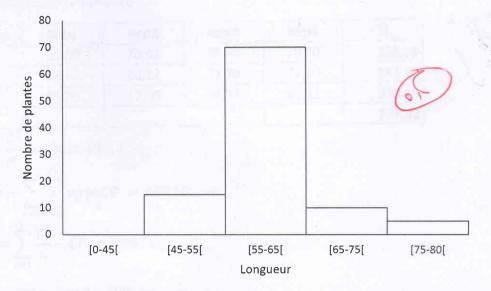
Code UE: UE-M

Matière non requise

N°	Nom et prénoms	Matricule	Etat	Exam	TD	TP	Conf	Sem	Proj	Stage	Autre
1	AIT MOHAMED CHAHRAZAD	161633031439	N	0300	12,00						
2	AMARA ZOHRA	171733057331	N		14,50						
3	AMOUR NOUHA	161633067744	N		16,75						
4	BAHLOULI KHAOULA	161633063056	N		12,00				>		
5	BEARCIA AYA	161633060789	N		13,00						
6	BELHADAD KENZA	161633066190	N	03 95	12.95						
7	BELKASMI RIMA	171733062842	N	10,50	19,25						
8	BELOUAR RANDA	161633074301	N	0625	1550						
9	BENBELOUAER KHAOULA	161633069428	N	0450	1150						
10	BENCHENOUF CHEROUQ	161633069462	N	08,00	14,75						
11	BENNIA ANFAL	161633064505	N	12.75	18,00						
12	BENZID KHADIDJA	171733059036	N	A.35	1675						
13	BOUGUETAYA MENAL	161633063588	N	03.50	M50						
14	BOUSSADA SAMIRA	961333053832	N	08.50	16,25						
15	CHARIFI FELLA	181533069901	N	0925	15.25						
16	DJELOULI KHALISSA	20093044115	N	05,50	16,50						
17	FRACHICHE AMIR	161633060817	N	01.75	10,50						
18	HACHAD AIDA	161633071173	N	06.00	15,25						
19	HAMZAOUI ROMAISSA	161633066796	N	05,50	14,50						
20	LACHHEB FATIHA	161633071183	N	06.75	15,00						
21	MEHDJI AHLEM	161633064533	N	02 75	15,25						
22	MERABET KAMILIA	161633061252	N	03.75	13,00						
23	MERROUCHE IBTISSAM	161633064531	N	ph 75	16.50						
24	MOGHNINE AICHA NESRINE	171733063818	N	03 00	13.25						
25	OMRI SARA	171733067698	N	12.25	19,25						
26	SAI ABDELAALI	20043100659	N	01.25	11.75						
27	SEHILI AYA	171733055574	N	03 50	12,00						
28	SEKHARA FAWZI	2001389322	N	06.00	13,00						
29	SELLAMI ILHEM	171733067278	N	0750	4						
30	YAHIAOUI HALIMA	171733057412	N	0150	4						

Fellahi Zine Bly Shrishine

Université Mohamed El Bachir El Ibrahimi -Bordi Bou Arreridj-Faculté des Sciences de la Nature et de la Vie et de la Terre et de l'Univers


Département des Sciences Agronomiques Corrigé-type de l'examen de : Techniques d'analyses statistiques et Traitements des données Master 2 : Protection des végétaux

Exercice 1:

1- Représentation graphique (Histogramme des effectif

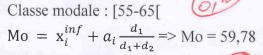
Longueur	[0-45[[45-55[[55-65[[65-75[[75-80[Total
Nombre de plantes ayant la longueur < x	0	15	70	10	5	100

2- Fréquences cumulées croissantes

 $f_i = n_i / N$

Longueur	[0-45[[45-55[[55-65[[65-75[[75-80[Total
Nombre de plantes ayant la longueur < x	0 .	15	70	10	5	100
f, ,	0	0,15	0,7	0,1	0,05	1
Fi ⁷	0	0,15	0,85	0,95	1	
Ci	22,5	50	60	70	77,5	
N _i	0	15	85	95	100	
N_iC_i	0	750	4200	700	387,5	6037,5
N _i C _i ²	0	37500	252000	49000	30031,25	368531,25

3- Calcul de la moyenne, le mode, la médiane, la variance et l'écart type


Moyenne:

$$\overline{\bar{x} = \frac{1}{n} \sum_{i=1}^{n} n_i c_i} > \bar{x} = 60,38$$

Mode:

Classe médiane : [55-65]

Me =
$$L_0 + \frac{a_i(\frac{n}{2} - N_{i-1})}{n_i} => \text{Me} = 60$$

الإبراهيمي بوج	
Variances.	1
$\sigma^2 = \frac{1}{2} \sum_{i=1}^{n} n_i c_i^2 - \bar{x}^2 = \delta^2 = 40.17$	(0,1
Ecant-type will	
$\sigma = \sqrt{3} = 6.34$	
Cake and exclude the state of	
Exercice 2:	

1- Analyse de la variance

Variétés	Rep1	Rep2	Rep3	Rep4	Ti
F1	61,00	70,92	55,94	70,80	258,66
F2	66,44	68,12	71,20	77,10	282,86
F3	55,30	57,30	54,39	63,11	230,10
G					771,62

$$CF = \frac{G^2}{n} = 49616,45$$

$$SSTO = \sum_{i=1}^{t} \sum_{j=1}^{r_i} y_{ij}^2 - CF = 627,10$$

$$SST = \sum_{j=1}^{t} \frac{T_i^2}{r_i} - CF = 348,74$$

$$SST = \sum_{i=1}^{t} \frac{T_i^2}{r_i} - CF = 348,74$$

$$SSE = SSTO - SST = 278,36$$

$$F_{th\acute{e}o(5\%)} \begin{cases} ddl_T = 2 \\ ddl_E = 9 \\ \alpha = 5\% \end{cases} = > F_{th\acute{e}o(5\%)} = 4,26$$

Source	df	SS	MS	F _{cal}	F théo (5%)
Traitement	2	348,74	174,37	5,64	4,26
Erreur	9	278,36	30,93		
Total	11	627,10			

 $F_{cal} > F_{th\acute{e}o} = >$ On peut conclure qu'il existe une différence significative entre les trois formulations fongiques au risque d'erreur $\alpha = 5\%$.

2- Il faut passer en 2ème étape à la comparaison des moyennes des trois traitements

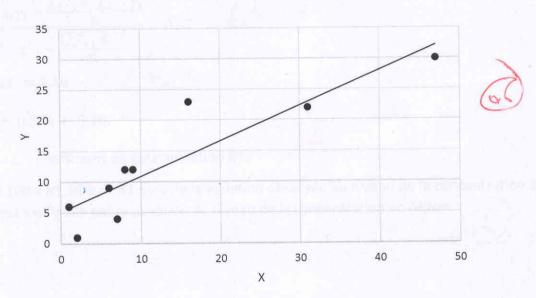
$$\Delta_{NK} = Q \sqrt{\frac{MSE}{r}} \quad \begin{cases} k = 3 \\ ddl_E = 9 \\ \alpha = 5\% \end{cases} \implies Q = 3.95 \implies \Delta_{NK} = 10.98$$
Où:

$$Ppds = t_{5\%} \sqrt{\frac{2MSE}{r}} \quad \begin{cases} ddl_E = 9 \\ \alpha = 5\% \end{cases} = > t = 2,26 = > Ppds = 8,90$$

		13.03.0	The same of the sa	W
	F1	(64,67)	F2 (70,72)	F3 (57,53)
F1 (64,67)		* :	NS	. NS
F2 (70,72)		رحبه الع	/العلوم العالم	S
F3 (57,53)		lico:	3	7. // - *

3- Calcul du coefficient de variation

$$CV (\%) = \frac{\sqrt{MSE}}{Moyenne} \times 100$$

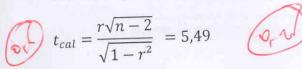

$$Moyenne = G/n = 64,3$$

$$CV (\%) = 8,65\%$$

Le CV est faible en valeur indiquant moins d'erreur lors de la tenue de l'expérience et une bonne fiabilité des résultats.

Exercice 3:

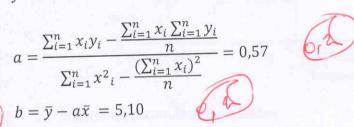
1- Nuage de points (X, Y).

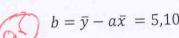

2- Calcul:

a. Coefficient de corrélation $r_{(X, Y)}$:

											- (C
21 St. 11										Total	Moyenne
X : ARNm (/cellule)	9	16	6	7	1	2	47	8	31	127	14.11
Y : Protéine (× 1000/cellule)	12	23	9	4	6	1	30	12	22	119	13.22
X ²	81	256	36	49	1	4	2209	64	961	3661	
γ²	144	529	81	16	36	1	900	144	484	2335	
XY	108	368	54	28	6	2	1410	96	682	2754	

Tester la significativité de la corrélation au seuil de confiance α = 95% :


$$\begin{cases} ddl = n - 2 = 7 \\ \alpha = 5\% \end{cases} = t_{th\acute{e}o} = 2,37$$



 $t_{cal} > t_{th\acute{e}o}$ => il existe une corrélation positive et significative entre la concentration en ARNm et en protéine seuil de confiance α = 95%.

b. Droite de régression et représenter graphique :

$$y = ax + b$$

Donc:
$$Y = 0.57x + 5.10$$

c. Coefficient de détermination \mathbb{R}^2 :

 $R^2 = (r)^2 \times 100 = 81,16\% => 81,16\%$ de la variation observée au niveau de la concentration en protéine est expliquée par la variation au niveau de la concentration en ARNm.