Université: Mohamed Elbachir El- Ibrahimi Bordj Bou Arréridj

Faculté: Sciences de la Nature et de la Vie et des Sciences de la Terre

Département: Sciences Biologiques

Année Universitaire: 2021 / 2022

1ère année - Domaine: Sciences de la Nature et de la Vie - Filière: Sciences biologiques - Spécialité:

Microbiologie appliquée. - 1 ier Semestre

Section No 1 Groupe No

Date: 10-02-2022

Résultats de l'examen de la matière :PGB / Physio-généti-bacté / UE Fondamentales1

Coef. examen: 60.00 % Coef. CC: 40.00% Coef.de la matière: 3 Crédit: 6.00 Code UE: UEF.01

Matière non requise

N°	Nom et prénoms	Matricule	Etat	Exam	TD	TP	Conf	Sem	Proj	Stage	Autre
1	ABADA RACHA	171733067603	N	11	11				14		
2	ADOUI IMANE	201533068386	D		1						
3	BELALMI AMIRA	171733059705	N	9,	8						
4	BELKACEM SARRA	171733067700	N	13	125						
5	BELMEGHERBI ZOUINA	171733063794	N	11	12		17				
6	BENAHCENE IMANE	181833053179	N	13,5	10						-
7	BENARIES EL YAMINE	181833056642	N	8,5	11						
8	BENCHENNAF YOUSRA	171733061842	N	15	13						
9	BENCHOUIA HANANE	181833049784	N	12	12						
10	BENDJEDDOU YASMINA	161633068625	D	1520	11						
11	BENFEHIMA RIMA	171733057521	N	9,5	8	6					
12	BENSAOUCHA ACHOUAK	20115074423	N	91	12	B,					
13	BENTOUATI FATEH	1994343368	N	-12	13,(
14	BENTOUMI ABIR	201433064248	D	9,26	8	Ť					
15	BENZEMAM TAOUS	181833051094	N	5,5	0						
16	BEZTOUT LILIA	171733057778	N	125	11,6						
17	BOUALLAOUI BOUALEM	181837004813	N	3,5	8						
18	BOUAOUINA DOUNIA	181833051200	N	10	12						
19	BOUCHELAL DAHIA	171733060861	N	166	141						
20	BOUDERBALA KAOUTHAR	181833049941	N	_	XT.						
21	BOUKHELIFA CHAIMA	181833055907	N	14	13, (1					
22	BOUREGHDAD GHADA	181833052264	N	09	1276						
23	BOUSSEBHA CHAHINESE	171733064349	N	9,5	10						
24	BOUZIANE AMINA	181833060237	N	10,(10						
25	CHICK SALAH HAMMOU	201839082769	N	5,5	10						
26	CHOUCHOU AHMED	2000384225	N	1616	11.6						
27	DADACHE AMIRA	181833054961	N	210	13						
28	DEBOUCHA CHAHINAZ	181833056438	N	10,0	10						
29	DJILAT RADHIA	171733064316	N	9,5	13						
30	DRAOUI DJAMEL EDDINE	181837001041	N	09	7						
31	GHAOUES ROUMAYSSA	161633066014	D								
32	HADJIDJ MOHAMMED	181833051493	N		/						
33	HAMZAOUI ISMAHAN	171733063751	N	8,5	10						
34	HANNIT NAWAL	201433063335	N	16	10						
35	HEREM RAYANE	181833051234	N		14.						
36	HOUAIRI NESRINE	171833061438	N	13,0	13						
37	KHIER MANAL	181833054168	3 N	14.0	10						

() E

Université: Mohamed Elbachir El- Ibrahimi Bordj Bou Arréridj

Faculté: Sciences de la Nature et de la Vie et des Sciences de la Terre

Département: Sciences Biologiques

Année Universitaire:

2021 / 2022

1ère année - Domaine: Sciences de la Nature et de la Vie - Filière Sciences biologiques - Spécialité:

Microbiologie appliquée. - Tier Semestre

Section N° Groupe N° 1

Date: 10-02-2022

Résultats de l'examen de la matière : PGB / Physio-généti-bacté / UE Fondamentales 1

Coef. examen: 60.00 % Coef. CC: 40.00% Coef.de la matière: 3 Crédit: 6.00 Code UE: UEF01

			1			Matière non requis					
N°	Nom et prénoms	Matricule	Etat	Exam	TD	TP	Conf	Sem	Proj	Stage	Autre
38	LAKHDARI BOUTHEYNA	181833053200	N	9,5	11,0						
39	LAMMARI ZOUINA	171733057531	D	55	05						
40	LEFKIR KHAOULA	181833049792	N	13	10						
41	MEHIRIS BILLEL ABDELBAKI	181833051136	N	/	/						
42	NEBBACHE DOUNIA	181833051199	N	135	11						
43	NEZZARI AHLEM	181833054940	N	09	MAK						
44	OUAHDI IMANE	171733059747	N	160	14.5						
45	ROUABAH AMANE	181833051006	N	18	161						
46	SARI KHAWLA	161633065970	N	/	_						
47	SEBAI ISMAHANE	171733061729	N	10	11.						
48	SILEM MAROUA	161733068394	N	7,5	06						
49	SLIMANI FATIMA ZOHRA	171733061797	N	9,5	11						
50	SLIMANI MARWA	181833055062	N	14	13, (
51	SOUALMIA DALLEL	171733059048	N	05	12	Si					
52	TAHRAOUI DOUNIA	181833051198	N	9,5	121						
53	TENNACHE DOUNIA	161733067556	N.	13,5	13						
54	ZETCHI DJOUAIRIA	201333053609	N	14,6	121						
55	ZITOUNI MERIEM	181833055028	N	6,5	10						

TAMINE Milondo

Université Mohamed El Bachir El Ibrahim - B.B.A.

Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers

Département des Sciences Biologiques

Corrigé type d'examen de physiologie et génétique bactérienne

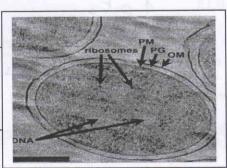
Master 1, Microbiologie appliquée

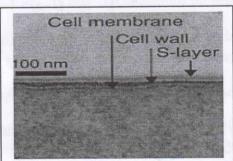
Exercice 1:

Haemophilus influenzae, petit bacille a Gram-, et Streptococcus pneumoniae, diplocoque a Gram+, presentent quelques analogies et differences de structure. Ces deux espèces possedent frequemment une capsule.

- 1. La capsule
- a- Donner la définition et la situer dans la cellule bacterienne.

La capsule: une couche gélatino-muqueuse, bien définie, entourant un ou plusieurs corps bactériens (ex: Pneumocoques (Streptococcus pneumoniae) encapsulés en diplocoques; Klebsielle pneumoniae encapsulée seule).


1 ots b-Pour chacune des deux espèces on peut definir plusieurs sérotypes. Pourquoi? les Ag capsulaires sont responsable de la spécificité sérologique (Ag K). A partir de cette propriété, une classification peut être établie (ex: 70 types sérologiques différents chez Streptococcus pneumoniae).


c-Les bactéries capsulées sont très virulentes. Pourquoi?

Elle s'oppose à la phagocytose en diminuant l'adhésion de bactéries aux macrophages. Elle exerce un chimiotactisme négatif sur les leucocytes.

- 2. La paroi
- a- Les photos de la paroi de chacune de ces bacteries prises au microscope electronique sont reproduites.

PM: membrane cytoplasmique PG: Peptidoglycane OM: membrane externe

a-A quelles bactéries (Gram négatif ou Gram positif) attribuer ces deux photos? A pts

- 1 Gram -2 Gram +
- 3- Le plasmide
- a-Comment les plasmides peuvent se répliquer?

Le plasmide peut se répliquer selon deux modèles :

1- La réplication de type Thêta θ

2-Réplication en cercle roulant

b- Citer 2 types de plasmides et donner un exemple de bactérie porteuse de chaque type.

2pts

Types	Organismes								
Plasmides conjugatifs	Plasmide F : Escherichia coli ; K : Pseudomonas Enterobacteriaceae; Staphylococcus aureus Pseudomonas Escherichia coli Agrobacterium tumefaciens Streptococcus mutans								
Plasmides Résistance Résistance à une grande variété d'antibiotiques Résistance au mercure, cadmium, nickel, cobalt, zinc, arsenic									
Plasmides de virulence Enterotoxine, Antigène K Plasmide tumorigène Adhérence aux dents (dextran)									
Production d'antibiotiques ou de bactériocine	Enterobacteriaceae, Clostridium, S Bactéries lactiques	Streptomyces,							
Plasmides métaboliques Utilisation du lactose, de saccharose, de l'urée, fixation de l'azote Dégradation de l'octane, du camphre, du naphtalène, du salicylate Modulation et fixation symbiotique de l'azote	Enterobacteriaceae Pseudomonas Rhizobium								

Exercice 2:

1-A l'aide des profils biochimiques suivants, calculer les indices de similitude et de distance entre les souches 1 et 2. Commenter les résultats obtenus

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Souche 1	+	+	-	- but	+	+	-		-	-	-	+	+	+	+	+	+	+	+	+	-
Souche 2	•	-	-	+	+	+	+	+	-	-	+	+		-15	-1	n= 10	-	-	12 1	-	(2)

L'indice de distance entre les deux souches est donné par la formule: d = D/D + P = 14/14 + 3 = 0, 82 Apts

l'indice de similitude **(s)** : d = (1-s)=1-0.82=0.18

1 pts

L'indice d entre les souches est grand (indice s est faible); ce sont donc des souches différentes ou moins semblables qu'on ne peut pas les réunir en un même groupe.

2-Les deux brins d'ADN peuvent se séparer avec un phénomènes appelé fusion

Quelle est la relation entre la température de fusion et l'effet hyperchrome, la température de fusion et GC%? $2\rho Vs$

La température de fusion (Tm), est la température ou 50% de l'ADN est déroulé. On la mesure par spectrophotométrie à 260 nm. Lors de la fusion la DO₂₆₀ augmente c'est l'effet hyperchrome.

L'hyperchromicité ou effet hyperchrome est la propriété des <u>polymères biologiques</u>, et en particulier l'<u>ADN</u> et l'<u>ARN</u>, de voir leur <u>absorption</u> dans l'<u>UV</u> augmenter lorsqu'ils subissent une <u>dénaturation</u>, c'est-à-dire une perte de leur <u>structure secondaire</u>

La valeur du Tm est variable, il dépend de la composition en bases de l'ADN. Plus la teneur en (G+C) d'un ADN est importante, plus la valeur du Tm est grande car les 2 brins sont d'autant plus difficiles à séparer car maintenues par plus de liaisons H. (3 liaisons pour GC contre seulement 2 pur AT)

Exercice 3:

La biosynthèse des protéines constitutives des bactéries requiert les 20 acides aminés essentiels. Pour une part, ces acides aminés sont disponibles tels quels dans le milieu, en revanche ces acides aminés peuvent constituent une source d'énergie et de carboné dans certaines conditions.

Soit la réaction suivante:

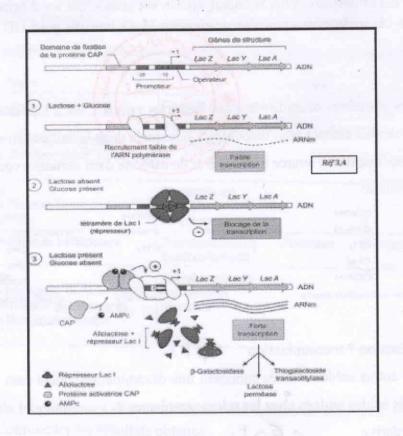
COOH COOH COOH

$$H_2N-CH$$
 C=0 C=0 CH₂
 CH_2 CH₂
 CH_2 CH₂
 CH_2 COOH

L-alanine α -cetoglutarate pyruvate L-glutamate

- 1. Nommer cette réaction ? transamination 1 > 1
- 2. Le glutamate et autres acides aminés subissent une désamination, quels sont les différents types de désamination des acides aminés chez les microorganismes ?
- -Désamination oxydative 0,50ts
- -Désamination non oxydative: -désaturante -par déshydratation réductive
- Désamination couplée
- 3. Donner la réaction de désamination du glutamate

Exercice 4


1- Pourquoi dit-on que les gènes z, y, et a codant respectivement pour les protéines β -galactosides, β -galactoside perméase et galactoside transacétylase appartiennent au même opéron?

Parce que se sont des gènes adjacents qui seront régulés et transcrit ensembles à l'aide d'un même promoteur et l'ARN messager ainsi obtenu est dit **polycistronique** (un ARN spécifique contient l'information nécessaire pour former plusieurs protéines différentes participent à la réalisation d'une même function)

2-De quel opéron s'agit-il ? Opéron lactose 1 P

3- Expliquer le mode de régulation de cet opéron par un schéma.

